In Pics: Historic $300 mn NASA DART asteroid collision a success; 1st step to save Earth | Photos

In Pics: Historic $300 mn NASA DART asteroid collision a success; 1st step to save Earth

NASA today conducted its first successful test in a bid to engage in planetary defense against rogue asteroids which might pose an impact risk with Earth. The test was conducted by smashing a spacecraft into an asteroid to deflect it off its course. But was it successful?

By: HT TECH
| Updated on: Sep 27 2022, 11:22 IST
nasa
DART mission is NASA’s $330 million first step to protect the planet against asteroids against potential impact. The aim of the mission was to smash a spacecraft into the Dimorphos asteroid to deflect it away from its path. This test will help scientists gain greater knowledge as to what happens when a craft is crashed against a space rock. (AP)
1/5 DART mission is NASA’s $330 million first step to protect the planet against asteroids against potential impact. The aim of the mission was to smash a spacecraft into the Dimorphos asteroid to deflect it away from its path. This test will help scientists gain greater knowledge as to what happens when a craft is crashed against a space rock. (AP)
DART mission
After months of anticipation, this test took place during today’s early hours when the DART spacecraft sacrificed itself by colliding with Dimorphos asteroid at 7:14 p.m. EDT. According to NASA, Dimorphos is an asteroid moonlet just 530 feet in width and orbits a larger asteroid called Didymos, nearly 5 times its size. (NASA)
2/5 After months of anticipation, this test took place during today’s early hours when the DART spacecraft sacrificed itself by colliding with Dimorphos asteroid at 7:14 p.m. EDT. According to NASA, Dimorphos is an asteroid moonlet just 530 feet in width and orbits a larger asteroid called Didymos, nearly 5 times its size. (NASA)
asteroid
NASA DART test was captured by a small companion satellite which followed the DART spacecraft to the target asteroid Dimorphos. The spacecraft’s camera is a cubeSAT called LICIACube (Light Italian CubeSat for Imaging Asteroids). The cubeSAT is made up of two key components, LUKE (LICIACube Unit Key Explorer) and LEIA (LICIACube Explorer Imaging for Asteroid), both of which capture key data from the collision. (Bloomberg)
3/5 NASA DART test was captured by a small companion satellite which followed the DART spacecraft to the target asteroid Dimorphos. The spacecraft’s camera is a cubeSAT called LICIACube (Light Italian CubeSat for Imaging Asteroids). The cubeSAT is made up of two key components, LUKE (LICIACube Unit Key Explorer) and LEIA (LICIACube Explorer Imaging for Asteroid), both of which capture key data from the collision. (Bloomberg)
Hera spacecraft
European Space Agency’s Hera spacecraft will fly to the asteroid to survey the aftermath of impact and gather information such as the size of impact crater, the mass of the asteroid and its make-up and internal structure using its CubeSAT satellite to conduct a radar probe of the asteroid after the collision (ESA)
4/5 European Space Agency’s Hera spacecraft will fly to the asteroid to survey the aftermath of impact and gather information such as the size of impact crater, the mass of the asteroid and its make-up and internal structure using its CubeSAT satellite to conduct a radar probe of the asteroid after the collision (ESA)
NASA DART Mission
Tech behind DART spacecraft - Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) along with Small-body Maneuvering Autonomous Real Time Navigation (SMART Nav) algorithms aboard the DART spacecraft allowed it to distinguish between the larger Didymos and its target Dimorphos, striking the asteroid with precision accuracy, according to NASA. (NASA )
5/5 Tech behind DART spacecraft - Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) along with Small-body Maneuvering Autonomous Real Time Navigation (SMART Nav) algorithms aboard the DART spacecraft allowed it to distinguish between the larger Didymos and its target Dimorphos, striking the asteroid with precision accuracy, according to NASA. (NASA )
First Published Date: 27 Sep, 11:07 IST
NEXT ARTICLE BEGINS