A picture is worth many emotions too

Images on Twitter, Facebook or other social media can convey a lot more than a sentence might and will often provoke emotions in the user, a fascinating research suggests.

By:IANS
| Updated on: Feb 09 2015, 16:13 IST

Images on Twitter, Facebook or other social media can convey a lot more than a sentence might and will often provoke emotions in the user, a fascinating research suggests.

To prove this, Jiebo Luo, professor of computer science at University of Rochester in Britain, in collaboration with researchers at Adobe Research has come up with a more accurate way to train computers to be able to digest data that comes in the form of images.

You may be interested in

MobilesTablets Laptops
28% OFF
Samsung Galaxy S23 Ultra 5G
  • Green
  • 12 GB RAM
  • 256 GB Storage
Google Pixel 8 Pro
  • Obsidian
  • 12 GB RAM
  • 128 GB Storage
Vivo X100 Pro 5G
  • Asteroid Black
  • 16 GB RAM
  • 512 GB Storage
Apple iPhone 15 Plus
  • Black
  • 6 GB RAM
  • 128 GB Storage

They describe what they refer to as a progressive training deep convolutional neural network (CNN).

Also read
Looking for a smartphone? To check mobile finder click here.

The trained computer can then be used to determine what sentiments these images are likely to elicit.

'This information could be useful for things as diverse as measuring economic indicators or predicting elections,' Luo added.

In social media, sentiment analysis is more complicated because many people express themselves using images and videos, which are more difficult for a computer to understand.

The researchers treated the task of extracting sentiments from images as an image classification problem.

This means that somehow each picture needs to be analysed and labels applied to it.

To begin the training process, Luo and his collaborators used a huge number of Flickr images that have been loosely labeled by a machine algorithm with specific sentiments.

This gave the computer a starting point to begin understanding what some images could convey.

The key step of the training process came next, when they discarded any images for which the sentiment or sentiments with which they have been labeled might not be true.

So they use only the 'better' labeled images for further training in a progressively improving manner within the framework of the powerful convolutional neural network.

The team found that this extra step significantly improved the accuracy of the sentiments with which each picture was labeled.

They also adapted this sentiment analysis engine with some images extracted from Twitter.

They used only a small number of images for fine-tuning the computer and yet, they showed they could improve on current state of the art methods for sentiment analysis of Twitter images.

One surprising finding is that the accuracy of image sentiment classification has exceeded that of the text sentiment classification on the same Twitter messages.

The paper was presented recently at the American Association for Artificial Intelligence (AAAI) conference in Austin, Texas.

Catch all the Latest Tech News, Mobile News, Laptop News, Gaming news, Wearables News , How To News, also keep up with us on Whatsapp channel,Twitter, Facebook, Google News, and Instagram. For our latest videos, subscribe to our YouTube channel.

First Published Date: 09 Feb, 16:10 IST
NEXT ARTICLE BEGINS