MIT engineers develop AI solution to see ‘invisible’ objects in the dark | HT Tech

MIT engineers develop AI solution to see ‘invisible’ objects in the dark

The Artificial Intelligence-based solution allows machines to see tiny imperfections in objects like a wine glass or creases on a contact lens.

By: KUL BHUSHAN
| Updated on: Dec 14 2018, 14:38 IST
All you need to know about MIT’s new Deep-learning tech that can spot ‘invisible’ objects in the dark
All you need to know about MIT’s new Deep-learning tech that can spot ‘invisible’ objects in the dark (Getty Images/iStockphoto)

Engineers at Massachusetts Institute of Technology (MIT) have developed an Artificial Intelligence (AI) mechanism to see "invisible" objects in the dark.

According to MIT engineers, the technology allows one to see objects as tiny as small imperfections in a wine glass or creases on a contact lens which are usually difficult to make out even in good light. Engineers used "deep neural network" to train a computer to "associate certain inputs with specific outputs — in this case, dark, grainy images of transparent objects and the objects themselves."

You may be interested in

MobilesTablets Laptops
28% OFF
Samsung Galaxy S23 Ultra 5G
  • Green
  • 12 GB RAM
  • 256 GB Storage
Google Pixel 8 Pro
  • Obsidian
  • 12 GB RAM
  • 128 GB Storage
Vivo X100 Pro 5G
  • Asteroid Black
  • 16 GB RAM
  • 512 GB Storage
Apple iPhone 15 Plus
  • Black
  • 6 GB RAM
  • 128 GB Storage

Engineers trained over 10,000 'transparent' glass-like etchings based on grainy photos taken in low light conditions. "The images were taken in very low lighting conditions, with about one photon per pixel — far less light than a camera would register in a dark, sealed room. They then showed the computer a new grainy image, not included in the training data, and found that it learned to reconstruct the transparent object that the darkness had obscured," said MIT in a blog post.

Also read
Looking for a smartphone? To check mobile finder click here.

"In the lab, if you blast biological cells with light, you burn them, and there is nothing left to image," said George Barbastathis, professor of mechanical engineering at MIT. "When it comes to X-ray imaging, if you expose a patient to X-rays, you increase the danger they may get cancer. What we're doing here is, you can get the same image quality, but with a lower exposure to the patient. And in biology, you can reduce the damage to biological specimens when you want to sample them." ALSO READ: Google launches AI project in Thailand to screen for diabetic eye disease

This AI solution can also fix light issues in low-exposure images.
This AI solution can also fix light issues in low-exposure images. (MIT)
image caption
This AI solution can also fix light issues in low-exposure images. (MIT)

At the core of the new AI mechanism is "Deep dark learning." According to engineers, the 'deep neural network' is much more dynamic than the traditional ones as it includes more detailed layers of computation for input and output.

Similar to the traditional process of data labelling, engineers used neural networks to recreate 'transparent' objects in photos taken in full light conditions. They further used a custom light modulator to closely observe the patterns on a sample glass slide.

MIT explained, "The team developed a deep neural network to identify transparent patterns from dark images, then fed the network each of the 10,000 grainy photographs taken by the camera, along with their corresponding patterns, or what the researchers called "ground-truths." ALSO READ: Microsoft Azure Machine Learning now available to all data scientists, developers 

Catch all the Latest Tech News, Mobile News, Laptop News, Gaming news, Wearables News , How To News, also keep up with us on Whatsapp channel,Twitter, Facebook, Google News, and Instagram. For our latest videos, subscribe to our YouTube channel.

First Published Date: 14 Dec, 14:35 IST
NEXT ARTICLE BEGINS